sagansense

neuroticthought:

skunkbear:

As Virginia Hughes noted in a recent piece for National Geographic’s Phenomena blog, the most common depiction of a synapse (that communicating junction between two neurons) is pretty simple:

Signal molecules leave one neuron from that bulby thing, float across a gap, and are picked up by receptors on the other neuron. In this way, information is transmitted from cell to cell … and thinking is possible.

But thanks to a bunch of German scientists - we now have a much more complete and accurate picture. They’ve created the first scientifically accurate 3D model of a synaptic bouton (that bulby bit) complete with every protein and cytoskeletal element.

This effort has been made possible only by a collaboration of specialists in electron microscopy, super-resolution light microscopy (STED), mass spectrometry, and quantitative biochemistry.

says the press release. The model reveals a whole world of neuroscience waiting to be explored. Exciting stuff!

You can access the full video of their 3D model here.

Credit: Benjamin G. Wilhelm, Sunit Mandad, Sven Truckenbrodt, Katharina Kröhnert, Christina Schäfer, Burkhard Rammner, Seong Joo Koo, Gala A. Claßen, Michael Krauss, Volker Haucke, Henning Urlaub, Silvio O. Rizzoli

In case you all missed it.

Wow - just wow

chroniclesofachemist
ucresearch:

Making Huge Strides for Mobility
This exoskeleton, developed by UC Berkeley professor Homayoon Kazerooni and his team, helps people suffering from spinal cord injuries to walk again.
“Many paraplegics are not in a situation to afford a $100,000 device, and insurance companies don’t pay for these devices,” Kazerooni said. “Our job as engineers is to make something people can use.”
To make his exoskeleton affordable, he used the simplest possible technology: a computer and batteries in a backpack, actuators at the hips, and a pair of crutches with buttons that activate an exoskeleton that fits around the legs. The crutches provide stability, an important consideration for paraplegics navigating streets and sidewalks.
“The key is independence for these people,” he said. “I want them to get up in the morning and go to work, go to the bathroom, stand at a bar and have a beer.”
Read more →

ucresearch:

Making Huge Strides for Mobility


This exoskeleton, developed by UC Berkeley professor Homayoon Kazerooni and his team, helps people suffering from spinal cord injuries to walk again.

“Many paraplegics are not in a situation to afford a $100,000 device, and insurance companies don’t pay for these devices,” Kazerooni said. “Our job as engineers is to make something people can use.”

To make his exoskeleton affordable, he used the simplest possible technology: a computer and batteries in a backpack, actuators at the hips, and a pair of crutches with buttons that activate an exoskeleton that fits around the legs. The crutches provide stability, an important consideration for paraplegics navigating streets and sidewalks.

“The key is independence for these people,” he said. “I want them to get up in the morning and go to work, go to the bathroom, stand at a bar and have a beer.”

Read more

chroniclesofachemist

bbsrc:

National blood week and looking to a future with blood replacements

This week is National Blood Week where the UK aims to open up every aspect of blood donation to encourage new and lapsed donors to come forward.

Every day thousands of people around the world have their lives saved or improved thanks to someone giving blood.

But imagine how many more lives could be saved if a sterile long-lasting blood substitute could be found, which could easily be stored at room temperature and available to all patients, regardless of their blood type.

This is the challenge that a team of BBSRC-funded scientists at the University of Essex are hoping to overcome with their Haem02 project to develop a one-size-fits-all, third generation artificial blood substitute.

Read more: www.bbsrc.ac.uk/news/health/2014/140610-pr-quest-for-long-lasting-blood.aspx

And for more details about Haem02 please visit: www.haemo2.com

physicswithbalzer

physicswithbalzer:

mucholderthen:

The Milky Way, along the Galactic plane
Seen in Wavelengths from Radio frequency through Gamma rays

  1. Radio map at 408 Mhz, showing mainly emission due to scattering of free electrons in the interstellar plasma (i.e. hot gas). The large arc is due to a nearby supernova remnant.
  2. 21 cm radiation map, showing the distribution of neutral Hydrogen gas in the galactic disk, and a few nearby arcs from recent supernovae.
  3. Distribution of H2, or molecular Hydrogen.This maps the “cold” gas in the Galaxy, from which stars will eventually form. The actual observed molecule is CO, rather than H2, which is very difficult to detect directly. The star forming layer of gas is remarkably thin. Infrared maps at the wavelengths 12, 60 and 100 microns.
  4. Infrared emission predominately comes from interstellar dust which is “warmed” to a few 10’s of degrees Kelvin by the ambient radiation field of the Galaxy’s stars.
  5. Near Infrared emission is dominated by cool stars. Since these are typically either old or long-lived stars, this is our best view of the Galaxy with the hot, bright young stars removed. Dust absorption at these wavelengths is very low and we get a clear view all the way to the Galactic center of the disk and bulge.
  6. Optical image of the Galaxy showing the huge effects that dust absorption has on our view of the central regions of the Galaxy. The emission is dominated by young and old stars and by the effects of dust.
  7. X-ray image taken by the Rosat satellite. This view, less clear than the others is dominated by supernova remnants (some of the arc-like features) as well as individual sources of X-radiation from close binary stars or black hole candidates.
  8. Gamma ray view of the Galaxy is dominated by emission from Cosmic Rays (high energy particles) decelerating in the interstellar medium

SOURCE: Chris Flynn’s Galactic Dynamics: Discovering the Milky Way

Boom. EDUCATE YOURSELVES, PEASANTS